Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(48): 45313-45325, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075758

RESUMO

COVID-19 is a persistent public health concern due to the emergence of more virulent and contagious variants resulting from mutations in the spike protein. The spike protein in newer variants, including Delta and Omicron, may be less sensitive to neutralizing antibodies and have a more favorable binding environment to the human ACE2 receptor. In the interest of identifying anti-COVID-19 allosteric drugs, a network-based approach based on coarse-grained molecular dynamics (CGMD) simulations, in complement to pocket-based analysis, is used to identify the possible allosteric pathways of the wild-type, Delta, and Omicron BA.1 spike proteins. Three pockets around 30 Å away from the spike-ACE2 interface are identified underneath the three receptor-binding domain (RBD) chains, which are potentially druggable due to favorable hydrophobicity and surface accessibility. Meanwhile, the network-based approach reveals intrinsic changes within the coupling between the three RBD chains, which could affect the overall communication between the spike-ACE2 interface active site and the three pockets, in particular between the stronger coupling between RBDA and RBDB for the wild type, versus the stronger coupling between RBDA and RBDC in Omicron BA.1. These results are to be used in subsequent drug discovery studies in targeting the spike protein allosterically as part of the search for COVID-19 drugs and as part of the toolbox against future pandemics.

2.
J Mol Graph Model ; 124: 108556, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37423019

RESUMO

The thermodynamic and biophysical implications of the introduction of a co-solvent during protein-ligand binding remain elusive. Using ternary complexes of 12-kDa FK506 binding protein (FKBP12), FKBP-rapamycin binding (FRB) domain of the mammalian/mechanistic target of rapamycin (mTOR) kinase, and rapamycin analogs (rapalogs) in glycerol-water mixtures, the influence of solvent composition on ligand binding dynamics was explored. The pharmaceutical potential of rapalogs and the utility of glycerol as a co-solvent in drug delivery applications were critical in deciding the system to be studied. Consolidation of existing studies on rapamycin modification was first performed to strategically design a new rapalog called T1. The results from 100-ns dual-boost Gaussian accelerated molecular dynamics simulations showed that protein stability was induced in the presence of glycerol. Reweighting of the trajectories revealed that the glycerol-rich solvent system lowers the energy barrier in the conformational space of the protein while also preserving native contacts between the ligand and the residues in the binding site. Calculated binding free energies using MM/GBSA also showed that electrostatic energy and polar contribution of solvation energy are heavily influenced by the changes in solvation. Glycerol molecules are preferentially excluded through electrostatic interactions from the solvation shell which induce complex stability as seen in existing experiments. Hence, using glycerol as a co-solvent in rapamycin delivery has a significant role in maintaining stability. In addition, compound T1 is a potential mTORC1-selective inhibitor with strong affinity for the FKBP12-FRB complex. This study aims to provide insights on the design of new rapalogs, and the applicability of glycerol as co-solvent for FKBP12-rapalog-FRB complexes.


Assuntos
Inibidores de MTOR , Proteína 1A de Ligação a Tacrolimo , Animais , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Glicerol , Serina-Treonina Quinases TOR , Água/química , Ligantes , Sirolimo/farmacologia , Sirolimo/metabolismo , Proteínas de Ligação a Tacrolimo , Solventes , Mamíferos/metabolismo
3.
J Chem Inf Model ; 63(15): 4654-4663, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37459569

RESUMO

Molecular mechanics rely on existing experimental and theoretical inputs to confidently calculate the trajectories of molecular systems. These calculations, however, are often hindered by missing force field parameters. A notable subject of this problem is metal centers of proteins. This study parameterized, through an adaptive force matching (AFM) workflow, the copper cofactor of plastocyanin in its two oxidation states. New 12-6 Lennard-Jones (LJ) parameters and atomic partial charges were generated to complete the non-bonded description of the copper site. Our models show uniform distorted tetrahedral structures for reduced plastocyanin, Cu(I), and oxidized plastocyanin, Cu(II). These structures align with the QM/MM MD results and existing crystallography studies. TD-DFT calculations, meanwhile, showed that conformations with elongated axial Cu-SMet and shortened equatorial Cu-SCys bonds retain the experimental UV-Vis profile of blue copper (BC) proteins, thus signifying the importance of Cu-S interactions on BC proteins' unique spectroscopic properties.

4.
ACS Omega ; 8(4): 3861-3871, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743026

RESUMO

Octopamine and tyramine receptors (OARs/TARs) are interesting targets for new insecticide development due to their unique roles in insects' physiological and cellular response and their specificity to invertebrates. Monoterpene compounds that bear resemblance to the natural ligands have been shown to bind to the OARs/TARs but elicit varied responses in different insect species. Using in silico methods, we attempt to investigate the molecular basis of monoterpene interactions and their specificity in different OARs and TARs of damaging or beneficial insects. Sequence and structure comparison revealed that the OARs/TARs studied generally have more similarities in terms of structure rather than sequence identity. Together with clustering and network analyses, we also revealed that the role of IL3 might be crucial in the identification of OAR and TAR and their unique function. Among the 35 monoterpenes subjected to ensemble docking, carvacrol had the most negative average binding energies with the target insect OARs and TARs. The differences in the key interacting residues of carvacrol with insect OARs and TARs could be the origin of variation in the responses of insect species to this monoterpene. Results suggest that carvacrol may be a potential natural-product-based insecticide, targeting multiple insect pests while being nonharmful to honeybees and Asian swallowtail butterflies. This work could provide insights into the development of effective species-specific natural-product-based insecticides that are more environmentally friendly than conventional insecticides.

5.
ACS Med Chem Lett ; 13(11): 1715-1722, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385939

RESUMO

Schistosomiasis is a neglected tropical disease caused by parasitic flatworms. Current treatment relies on just one partially effective drug, praziquantel (PZQ). Schistosoma mansoni Venus Kinase Receptors 1 and 2 (SmVKR1 and SmVKR2) are important for parasite growth and egg production, and are potential targets for combating schistosomiasis. VKRs consist of an extracellular Venus Flytrap Module (VFTM) linked via a transmembrane helix to a kinase domain. Here, we initiated a drug discovery effort to inhibit the activity of the SmVKR2 kinase domain (SmVKR2KD) by screening the GSK published kinase inhibitor set 2 (PKIS2). We identified several inhibitors, of which four were able to inhibit its enzymatic activity and induced phenotypic changes in ex vivo S. mansoni. Our crystal structure of the SmVKR2KD displays an active-like state that sheds light on the activation process of VKRs. Our data provide a basis for the further exploration of SmVKR2 as a possible drug target.

6.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771057

RESUMO

Underutilized biowaste materials are investigated for their potential as sustainable textile colorants through an approach based on mass spectrometry, bioinformatics, and chemometrics. In this study, colorful decoctions were prepared from the outer bark of Eucalyptus deglupta and fruit peels of Syzygium samarangense, Syzygium malaccense, Diospyros discolor, and Dillenia philippinensis. Textile dyeing was performed along with liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics to determine the small molecules responsible for the observed colors. Global Natural Products Social Molecular Networking (GNPS) guided the annotation of black-producing proanthocyanidins in D. philippinensis and E. deglupta through complexation with FeSO4 mordant. Flavonoids from the yellow-colored D. philippinensis extracts were found to be similar to those in Terminalia catappa, a known traditional dye source. A higher intensity of epicatechin in E. deglupta produced a red-brown color in the presence of Cu2+. Furthermore, Syzygium fruit peels have poor wash-fastness in cotton fibers, but bioactive chalcone unique to S. samarangense samples may be a potential nutritional food colorant. Unsupervised PCA and supervised OPLS-DA chemometrics distinguished chemical features that affect dyeing properties beyond the observed color. These findings, along with growing data on natural dyes, could guide future research on sustainable colorants.


Assuntos
Cromatografia Líquida de Alta Pressão , Corantes/química , Eliminação de Resíduos de Serviços de Saúde , Espectrometria de Massas em Tandem , Produtos Biológicos , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Estrutura Molecular , Espectrometria de Massas em Tandem/métodos , Têxteis
7.
ACS Omega ; 6(37): 24166-24175, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568695

RESUMO

Cupiennin 1a is an antimicrobial peptide found in the venom of the spider Cupiennius salei. A highly cationic peptide, its cell lysis activity has been found to vary between neutral and charged membranes. In this study, Hamiltonian replica-exchange molecular dynamics (HREMD) was used to determine the conformational ensemble of the peptide in both charged (pH 3) and neutral (pH 11) states. The obtained free energy landscapes demonstrated the conformational diversity of the neutral peptide. At high pH, the peptide was found to adopt helix-hinge-helix and disordered structures. At pH 3, the peptide is structured with a high propensity toward α-helices. The presence of these α-helices seems to assist the peptide in recognizing membrane surfaces. These results highlight the importance of the charged residues in the stabilization of the peptide structure and the subsequent effects of pH on the peptide's conformational diversity and membrane activity. These findings may provide insights into the antimicrobial activity of Cupiennin 1a and other amphipathic linear peptides toward different cell membranes.

8.
PLoS One ; 16(5): e0247289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014935

RESUMO

Philippine garlic (Allium sativum L.) is arguably known to pack flavor and aroma in smaller bulbs compared to imported varieties saturating the local market. In this study, ethanolic extracts of Philippine garlic cultivars were profiled using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF). γ-Glu dipeptides, oligosaccharides and lipids were determined in Philippine garlic cultivars through bioinformatics analysis in GNPS Molecular Networking Platform and fragmentation analysis. Multivariate statistical analysis using XCMS Online showed the abundance of γ-Glu allyl cysteine in Batanes-sourced garlic while γ-Glu propenyl cysteine, γ-Glu methyl cysteine, and alliin are enriched in the Ilocos cultivar. Principal component analysis showed that the γ-Glu dipeptides found in local garlic influenced their distinct separation across PC1 from imported varieties. This presence of high levels of γ-Glu dipeptides and probiotic oligosaccharides may potentially contribute to the superior flavor and nutritional benefits of Philippine garlic.


Assuntos
Alho/metabolismo , Metaboloma , Cisteína/análogos & derivados , Cisteína/análise , Aromatizantes/análise , Alho/química , Óleos Voláteis/análise
9.
J Mol Graph Model ; 104: 107829, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33450664

RESUMO

Ligand-based allostery has been gaining attention for its importance in protein regulation and implication in drug design. One of the interesting cases of protein allostery is the thyroid hormone receptor - retinoid x receptor (TR:RXR), which regulates the gene expression of important physiological processes, such as development and metabolism. It is regulated by the TR native ligand triiodothyronine (T3), which displays anticooperative behavior to the RXR ligand 9-cis retinoic acid (9C). In contrast to this anticooperative behavior, 9C has been shown to increase the activity of TR:RXR. Here we probed the influence of the affinity and the interactions of the TR ligand to the allostery of the TR:RXR through contact dynamics and residue networks. The TR ligand analogs were designed to have higher (G2) and lower (N1) binding energies than T3 when docked to the TR:RXR(9C) complex. The aqueous TR(N1/T3/G2):RXR(9C) complexes were subjected to 30 ns all-atom simulations using theNAMD. The program CAMERRA was used to capture the subtle perturbations of TR:RXR by mapping the residue contact dynamics. Various parts of the TR ligands; including the hydrophilic head, the iodine substituents, and the ligand tail; have been probed for their significance in ligand affinity. The results on the T3 and G2 complexes suggest that ligand affinity can be utilized as a predictor for anticooperative systems on which ligand is more likely to dissociate or remain bound. All 3 complexes also display distinct contact networks for cross-dimer signalling and ligand communication. Understanding ligand-based allostery could potentially unveil secrets of ligand-regulated protein dynamics, a foundation for the design of better and more efficient allosteric drugs.


Assuntos
Receptores do Ácido Retinoico , Receptores dos Hormônios Tireóideos , Ligantes , Receptores X de Retinoides , Tri-Iodotironina
10.
Mar Drugs ; 18(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019526

RESUMO

Marine cone snails belonging to the Conidae family make use of neuroactive peptides in their venom to capture prey. Here we report the proteome profile of the venom duct of Conus eburneus, a cone snail belonging to the Tesseliconus clade. Through tandem mass spectrometry and database searching against the C. eburneus transcriptome and the ConoServer database, we identified 24 unique conopeptide sequences in the venom duct. The majority of these peptides belong to the T and M gene superfamilies and are disulfide-bonded, with cysteine frameworks V, XIV, VI/VII, and III being the most abundant. All seven of the Cys-free peptides are conomarphin variants belonging to the M superfamily that eluted out as dominant peaks in the chromatogram. These conomarphins vary not only in amino acid residues in select positions along the backbone but also have one or more post-translational modifications (PTMs) such as proline hydroxylation, C-term amidation, and γ-carboxylation of glutamic acid. Using molecular dynamics simulations, the conomarphin variants were predicted to predominantly have hairpin-like or elongated structures in acidic pH. These two structures were found to have significant differences in electrostatic properties and the inclusion of PTMs seems to complement this disparity. The presence of polar PTMs (hydroxyproline and γ-carboxyglutamic acid) also appear to stabilize hydrogen bond networks in these conformations. Furthermore, these predicted structures are pH sensitive, becoming more spherical and compact at higher pH. The subtle conformational variations observed here might play an important role in the selection and binding of the peptides to their molecular targets.


Assuntos
Aminoácidos/química , Conotoxinas/química , Caramujo Conus/fisiologia , Venenos de Moluscos/química , Sequência de Aminoácidos , Animais , Conformação Proteica , Espectrometria de Massas em Tandem
11.
J Mol Graph Model ; 100: 107657, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712552

RESUMO

Lipases are important enzymes in many biochemical industries, thus making them attractive targets for protein engineering to improve enzymatic properties. In this work, a ''reverse engineering'' approach was explored: disrupt secondary structures to determine their contribution to enzyme stability and activity. All the α-helices of the lipase from Pseudomonas aeruginosa PAO1 (PAL) were systematically disrupted using computational proline mutagenesis and molecular dynamics (MD) simulations. This method identified the α3 mutant (R89P), located within the vicinity of the active site, to be significantly important for stability and activity. In addition, the α6 system (L159P), part of the ''cap'' domain that regulates substrate entry into the active site, was found to be critical for activity as it pushed the lipase to adopt a completely closed conformation. The perturbation introduced by the proline mutations resulted in increased backbone flexibility that significantly decreased protein stability. Moreover, mutations within the cap domain helices - α4 (A115P), α5 (S132P, G139P), α6 (L159P), and α7 (R169P) - resulted in increased flexibility of the N-terminal region of the α5 helix, the mobile ''lid'' helix, that pushes the gorge into a partially closed conformation. The α6 mutation (L159P) further increased the flexibility of the helix-loop region at the C-terminal end of the α5 helix to push the lid into the fully closed state. Therefore, the α3 and α6 helices could be ''hot spots'' for stabilizing mutations that could improve the overall enzyme stability and activity this lipase. The insights obtained in this work may be validated experimentally in future works.


Assuntos
Lipase , Pseudomonas aeruginosa , Estabilidade Enzimática , Lipase/genética , Lipase/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Conformação Proteica em alfa-Hélice , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
12.
ACS Omega ; 5(3): 1408-1413, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010812

RESUMO

Poly(N-isopropylacrylamide) (PNIPAM) is a popular polymer widely used in smart hydrogel synthesis due to its thermo-responsive behavior in aqueous medium. Aqueous PNIPAM hydrogels can reversibly swell and collapse below and above their lower critical solution temperature (LCST), respectively. The present work used molecular dynamics simulations to explore the behavior of water molecules surrounding the side chains of a NIPAM pentamer in response to temperature changes (273-353 K range) near its experimental LCST (305 K). Results suggest a strong inverse correlation of temperature with water density and hydrophobic hydration character of the first coordination shell around the isopropyl groups. Integrity of the first and second coordination shells is further characterized by polygon ring analysis. Predominant occurrence of pentagons suggests clathrate-like behavior of both shells at lower temperatures. This predominance is eventually overtaken by 4-membered rings as temperature is increased beyond 303 and 293 K for the first and second coordination shells, respectively, losing their clathrate-like property. It is surmised that this temperature-dependent stability of the coordination shells is one of the important factors that controls the reversible swell-collapse mechanism of PNIPAM hydrogels.

13.
Mol Divers ; 24(4): 1291-1299, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31502188

RESUMO

Cone snails are slow-moving animals that secure survival by injecting to their prey a concoction of highly potent and stable neurotoxic peptides called conotoxins. These small toxins (~ 10-30 AA) interact with ion channels and their diverse structures account for various variables such as the environment and the prey of preference. This study probed the conformational space of α-conotoxin PnIB from Conus pennaceus by performing all-atom molecular dynamics simulations on the conotoxin in complex solvent systems of water and octanol. Secondary structure analyses showed a uniform conformation for the pure (C100Oc, C100W) and minute (C95Oc, C5Oc) systems. In C50Oc, however, structural changes were observed. The original helices were converted to turns and were shown to happen simultaneously with the elongation of the helix and shortening of end-to-end distance. The transitions complement the orientation of the peptide at the interface. The shift to the broken helix conformation is marked by the rearrangement of solvent molecules to a framework that favors the accumulation of water molecules at residues 6-11 of the H2 region. This promotes specific protein-solvent interactions that facilitate secondary structure transitions. As PnIB has shown favorable binding toward neuronal nicotinic acetylcholine receptors, this study may provide insights on this conotoxin's therapeutic potential. Description: Structural changes in PnIB are accompanied by a simultaneous change in solvent density.


Assuntos
Conotoxinas/química , Conotoxinas/metabolismo , Solventes/química , Animais , Simulação por Computador , Neurônios/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Caramujos/química , Caramujos/metabolismo
14.
Sci Rep ; 9(1): 17096, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745103

RESUMO

A strategy in the discovery of anti-tuberculosis (anti-TB) drug involves targeting the enzymes involved in the biosynthesis of Mycobacterium tuberculosis' (Mtb) cell wall. One of these enzymes is Galactofuranosyltransferase 2 (GlfT2) that catalyzes the elongation of the galactan chain of Mtb cell wall. Studies targeting GlfT2 have so far produced compounds showing minimal inhibitory activity. With the current challenge of designing potential GlfT2 inhibitors with high inhibition activity, computational methods such as molecular docking, receptor-ligand mapping, molecular dynamics, and Three-Dimensional-Quantitative Structure-Activity Relationship (3D-QSAR) were utilized to deduce the interactions of the reported compounds with the target enzyme and enabling the design of more potent GlfT2 inhibitors. Molecular docking studies showed that the synthesized compounds have binding energy values between -3.00 to -6.00 kcal mol-1. Two compounds, #27 and #31, have registered binding energy values of -8.32 ± 0.01, and -8.08 ± 0.01 kcal mol-1, respectively. These compounds were synthesized as UDP-Galactopyranose mutase (UGM) inhibitors and could possibly inhibit GlfT2. Interestingly, the analogs of the known disaccharide substrate, compounds #1-4, have binding energy range of -10.00 to -19.00 kcal mol-1. The synthesized and newly designed compounds were subjected to 3D-QSAR to further design compounds with effective interaction within the active site. Results showed improved binding energy from -6.00 to -8.00 kcal mol-1. A significant increase on the binding affinity was observed when modifying the aglycon part instead of the sugar moiety. Furthermore, these top hit compounds were subjected to in silico ADMETox evaluation. Compounds #31, #70, #71, #72, and #73 were found to pass the ADME evaluation and throughout the screening, only compound #31 passed the predicted toxicity evaluation. This work could pave the way in the design and synthesis of GlfT2 inhibitors through computer-aided drug design and can be used as an initial approach in identifying potential novel GlfT2 inhibitors with promising activity and low toxicity.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Galactosiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Inibidores Enzimáticos/química , Galactosiltransferases/metabolismo , Humanos , Preparações Farmacêuticas/metabolismo , Testes de Toxicidade
15.
Sci Rep ; 9(1): 16275, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700013

RESUMO

Tyramine receptor (TyrR) is a biogenic amine G protein-coupled receptor (GPCR) associated with many important physiological functions in insect locomotion, reproduction, and pheromone response. Binding of specific ligands to the TyrR triggers conformational changes, relays the signal to G proteins, and initiates an appropriate cellular response. Here, we monitor the binding effect of agonist compounds, tyramine and amitraz, to a Sitophilus oryzae tyramine receptor (SoTyrR) homology model and their elicited conformational changes. All-atom molecular dynamics (MD) simulations of SoTyrR-ligand complexes have shown varying dynamic behavior, especially at the intracellular loop 3 (IL3) region. Moreover, in contrast to SoTyrR-tyramine, SoTyrR-amitraz and non-liganded SoTyrR shows greater flexibility at IL3 residues and were found to be coupled to the most dominant motion in the receptor. Our results suggest that the conformational changes induced by amitraz are different from the natural ligand tyramine, albeit being both agonists of SoTyrR. This is the first attempt to understand the biophysical implication of amitraz and tyramine binding to the intracellular domains of TyrR. Our data may provide insights into the early effects of ligand binding to the activation process of SoTyrR.


Assuntos
Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de Amina Biogênica/química , Tiramina/química , Animais , Sítios de Ligação , Besouros , Humanos , Ligação Proteica , Receptores de Amina Biogênica/metabolismo , Tiramina/metabolismo
16.
J Phys Chem A ; 123(36): 7792-7802, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429287

RESUMO

Electron transfer coupling is a critical factor in determining electron transfer rates. This coupling strength can be sensitive to details in molecular geometries, especially intermolecular configurations. Thus, studying charge transporting behavior with a full first-principle approach demands a large amount of computation resources in quantum chemistry (QC) calculation. To address this issue, we developed a machine learning (ML) approach to evaluate electronic coupling. A prototypical ML model for an ethylene system was built by kernel ridge regression with Coulomb matrix representation. Since the performance of the ML models highly dependent on their building strategies, we systematically investigated the generality of the ML models, the choice of features and target labels. The best ML model trained with 40 000 samples achieved a mean absolute error of 3.5 meV and greater than 98% accuracy in predicting phases. The distance and orientation dependence of electronic coupling was successfully captured. Bypassing QC calculation, the ML model saved 10-104 times the computation cost. With the help of ML, reliable charge transport models and mechanisms can be further developed.

17.
J Mol Graph Model ; 89: 250-260, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933883

RESUMO

Drawbacks of industrially-used fructosyltransferases (FTs) such as low optimum temperature and low fructooligosaccharides (FOS) yield necessitates the search for engineered FTs that are highly thermostable and active. With the availability of the first plant FT crystal structure from Pachysandra terminalis (PDB ID: 3UGH), computer-aided protein engineering of plant FT is now feasible. To obtain insights on the effect of specific mutations i.e. disulfide bridge introduction, wild-type and mutant FTs were subjected to a 15 µs Martini Coarse-grained Molecular Dynamics (CGMD) simulations at 303 K and 334 K. We report here the five mutants, M31C-Q49C, L144C-S193C, P34C-W300C, S219C-L226C and V470C-S498C with enhanced thermostabilities and/or activities relative to the wild type. Interestingly, M31C-Q49C, which is located within the catalytic-carrying blade of the catalytic domain, has an activity enhancement at both temperatures. At 334 K, three mutations, L144C-S193C, P34C-W300C and V470C-S498C, achieved thermostability relative to the wild type. Intriguingly, both activity and stability enhancement exhibited only at 334 K can be achieved provided that the mutation is located either on the catalytic-carrying residue blade of the catalytic domain or on the non-catalytic domain. Our results suggest that V470C-S498C and L144C-S193C are promising mutants and that domain-specific approach may be exploited to customize enzyme properties.


Assuntos
Dissulfetos/química , Hexosiltransferases/química , Modelos Moleculares , Pachysandra/enzimologia , Termodinâmica , Sítios de Ligação , Estabilidade Enzimática , Hexosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Temperatura
18.
Peptides ; 104: 7-14, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29614317

RESUMO

Anoplin (GLLKRIKTLL-NH2) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H2O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Venenos de Vespas/química , Venenos de Vespas/farmacologia , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Lipoilação , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Staphylococcus aureus/efeitos dos fármacos
19.
Molecules ; 22(10)2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29064449

RESUMO

Essential oils extracted from plants are composed of volatile organic compounds that can affect insect behavior. Identifying the active components of the essential oils to their biochemical target is necessary to design novel biopesticides. In this study, essential oils extracted from Diospyros discolor (Willd.) were analyzed using gas chromatography mass spectroscopy (GC-MS) to create an untargeted metabolite profile. Subsequently, a conformational ensemble of the Drosophila melanogaster octopamine receptor in mushroom bodies (OAMB) was created from a molecular dynamics simulation to resemble a flexible receptor for docking studies. GC-MS analysis revealed the presence of several metabolites, i.e. mostly aromatic esters. Interestingly, these aromatic esters were found to exhibit relatively higher binding affinities to OAMB than the receptor's natural agonist, octopamine. The molecular origin of this observed enhanced affinity is the π -stacking interaction between the aromatic moieties of the residues and ligands. This strategy, computational inspection in tandem with untargeted metabolomics, may provide insights in screening the essential oils as potential OAMB inhibitors.


Assuntos
Diospyros/química , Proteínas de Drosophila/química , Óleos Voláteis/química , Receptores de Amina Biogênica/química , Compostos Orgânicos Voláteis/química , Animais , Drosophila , Simulação de Acoplamento Molecular , Estrutura Molecular , Corpos Pedunculados/química , Extratos Vegetais/química , Ligação Proteica
20.
Biopolymers ; 105(12): 864-72, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27463323

RESUMO

Interfacial proteins function in unique heterogeneous solvent environments, such as water-oil interfaces. One important example is microbial lipase, which is activated in an oil-water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all-atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed-gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open-gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α-helical, as we previously observed in studies that address water-oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.


Assuntos
Proteínas de Bactérias/química , Dimetil Sulfóxido/química , Lipase/química , Pseudomonas aeruginosa/enzimologia , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...